Tuesday, 2 September 2025

Why Physicists Disagree Wildly On What Quantum Mechanics Says About Reality

A Nature survey (here) highlights a familiar but unresolved paradox: the most precise and successful theory in modern physics—quantum mechanics—still lacks a shared interpretation of what it means. Is the wavefunction real? Is quantum theory about particles, probabilities, information, or something else? After a century of extraordinary predictive power, physicists still disagree on whether the theory describes reality or merely models outcomes.

From the perspective of relational ontology, this confusion isn’t surprising. In fact, it’s precisely what we’d expect when modern physics is still working within metaphysical assumptions that quantum theory itself has already undermined.

Here are four key reframings:


1. There is no “quantum world”—because there is no unconstrued world.

The debate assumes there’s a physical reality “out there” that quantum theory either does or does not describe. But relational ontology begins from a different starting point: phenomena are not things but construed events. A theory like quantum mechanics isn’t a mirror of a pre-existing world—it’s a structured potential for construal. The quantum wavefunction isn’t a “real object” or “just information”—it’s a system, a theory of possible instances, awaiting a perspectival cut.


2. The observer–observed divide is not a mystery—it’s a misconstrual.

Quantum puzzles often hinge on the observer’s role in measurement. Does the observer collapse the wavefunction? What happens when no one is watching?

These questions presuppose a dualism between subject and object, knower and known. But relational ontology treats this distinction not as an ontological given, but as a cut within the system. The observer and observed are co-constituted in the act of construal. Measurement is not epistemic interference—it is actualisation within a potential.


3. Wavefunction “reality” is a category mistake.

Physicists in the survey disagree on whether the wavefunction is real. But this assumes that “reality” is a simple category—either you exist or you don’t.

Relational ontology makes a sharper distinction: structured potentials are not actual entities, but neither are they fictions. The wavefunction belongs to the realm of system—a theoretical space of possibility. Its instantiation—what physicists call a measurement—is a perspectival shift, not a metaphysical transformation.


4. Meaning precedes measurement.

Quantum experiments don’t generate raw data that later acquires meaning—they produce phenomena only through construal. The apparatus, the observable, the notion of “collapse”—these are not neutral or passive. They are symbolic selections within a semiotic system. The meaning of quantum events is not discovered but enacted.


In sum: the survey reveals not just disagreement, but the limits of the metaphysical frame in which these debates are taking place. As long as quantum theory is interpreted through a lens that separates reality from construal, observer from observed, and theory from meaning, confusion will persist.

Relational ontology doesn’t offer another interpretation of quantum mechanics. It offers a reorientation: from what the theory says about the world to how the world arises in and through construal.

No comments:

Post a Comment